Respuesta :

Answer:

1. ∠ABD = 20°.

2.  Arc AB =  140°.

3.  Arc AD =  40°.

Step-by-step explanation:

Given information: ∠ADB = 70°. BD is diameter.

According to Central angle theorem, the central angle from two chosen points A and B on the circle is always twice the inscribed angle from those two points.

By Central angle theorem,

[tex]\angle DAB=90^{\circ}[/tex]

Using angle sum of property in triangle ADB we get,

[tex]\angle ADB+\angle DAB+\angle  ABD=180^{\circ}[/tex]

[tex]70^{\circ}+90^{\circ}+\angle  ABD=180^{\circ}[/tex]

[tex]\angle  ABD=20^{\circ}[/tex].

Draw a line segment AO.

In triangle AOD, AO=OD, so

[tex]\angle ODB=\angle OAD=70^{\circ}[/tex]

Using angle sum property in triangle AOD,

[tex]\angle AOD+\angle ODA+\angle  OAD=180^{\circ}[/tex]

[tex]\angle AOD+70^{\circ}+70^{\circ}=180^{\circ}[/tex]

[tex]\angle AOD=40^{\circ}[/tex]

Therefore length of arc AD is 40°.

The angle AOD and AOB are supplementary angles.

[tex]\angle AOD+\angle AOB=180^{\circ}[/tex]

[tex]40^{\circ}+\angle AOB=180^{\circ}[/tex]

[tex]\angle AOB=140^{\circ}[/tex]

Therefore length of arc AB is 140°.

Ver imagen DelcieRiveria

Answer:

20, 140, 40 in that order.

Step-by-step explanation:

Had the question on oddyssey ware.