[tex]\bf \qquad \qquad \textit{Future Value of an ordinary annuity}\\
\left. \qquad \qquad \right.(\textit{payments at the end of the period})
\\\\
A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right][/tex]
[tex]\bf \qquad
\begin{cases}
A=
\begin{array}{llll}
\textit{accumulated amount}\\
\end{array}\to &
\begin{array}{llll}
8000
\end{array}\\
pymnt=\textit{periodic payments}\\
r=rate\to 5\%\to \frac{5}{100}\to &0.05\\
n=
\begin{array}{llll}
\textit{times it compounds per year}\\
\textit{monthly, thus twelve}
\end{array}\to &12\\
t=years\to &4
\end{cases}[/tex]
[tex]\bf 8000=pymnt\left[ \cfrac{\left( 1+\frac{0.05}{12} \right)^{12\cdot 4}-1}{\frac{0.05}{12}} \right]
\\\\\\
\cfrac{8000}{\left[ \frac{\left( 1+\frac{0.05}{12} \right)^{12\cdot 4}-1}{\frac{0.05}{12}} \right]}=pymnt\implies \cfrac{8000}{\frac{\left( \frac{241}{240} \right)^{48}-1}{\frac{1}{240}}}=pymnt
\\\\\\
\cfrac{8000}{53.0148852}\approx pymnt\implies 150.9010152318\approx pymnt[/tex]