The coordinates of the vertices of ∆PQR are P(-2,5), Q(-1,1), and R(7,3). Determine whether ∆PQR is a right triangle. Show your work and explain your answer!

Step 1
Plot the vertices of triangle PQR
[tex]P(-2,5)\ Q(-1,1)\ R(7,3)[/tex]
using a graphing tool
see the attached figure
we know that the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
Step 2
Find the distance PR
[tex]P(-2,5)\ R(7,3)[/tex]
substitute the values
[tex]d=\sqrt{(3-5)^{2}+(7+2)^{2}}[/tex]
[tex]d=\sqrt{(-2)^{2}+(9)^{2}}[/tex]
[tex]dPR=\sqrt{85}\ units[/tex]
Step 3
Find the distance QP
[tex]Q(-1,1)\ P(-2,5)[/tex]
substitute the values
[tex]d=\sqrt{(5-1)^{2}+(-2+1)^{2}}[/tex]
[tex]d=\sqrt{(4)^{2}+(-1)^{2}}[/tex]
[tex]dQP=\sqrt{17}\ units[/tex]
Step 4
Find the distance QR
[tex]Q(-1,1)\ R(7,3)[/tex]
substitute the values
[tex]d=\sqrt{(3-1)^{2}+(7+1)^{2}}[/tex]
[tex]d=\sqrt{(2)^{2}+(8)^{2}}[/tex]
[tex]dQR=\sqrt{68}\ units[/tex]
Step 5
If triang;le PQR is a right triangle
then
Applying the Pythagorean Theorem
[tex]PR^{2} =QP^{2} +QR^{2}[/tex]
substitute the values
[tex]\sqrt{85}^{2} =\sqrt{17}^{2} +\sqrt{68}^{2}[/tex]
[tex]\sqrt{85}^{2} =\sqrt{17}^{2} +\sqrt{68}^{2}[/tex]
[tex]85=17+68[/tex]
[tex]85=85[/tex] ---------> is true
therefore
The answer is
The triangle PQR is a right triangle