Respuesta :
Because y varies inversely as x, therefore
[tex]y= \frac{k}{x} [/tex]
where k = constant.
When x = 6, y = 2.5. Ther efore
[tex] \frac{k}{6} = 2.5[/tex]
Cross multiply.
k = 6 x 2.5 = 15
The equation is
[tex]y = \frac{15}{x} [/tex]
When x = 4, obtain
[tex]y = \frac{15}{4}= 3.75[/tex]
Answer: a. 3.75
[tex]y= \frac{k}{x} [/tex]
where k = constant.
When x = 6, y = 2.5. Ther efore
[tex] \frac{k}{6} = 2.5[/tex]
Cross multiply.
k = 6 x 2.5 = 15
The equation is
[tex]y = \frac{15}{x} [/tex]
When x = 4, obtain
[tex]y = \frac{15}{4}= 3.75[/tex]
Answer: a. 3.75
Inverse proportion is given in the form
[tex]y= \frac{k}{x} [/tex]
We need to work out the constant, k, by substituting x = 6 and y = 2.5
[tex]2.5= \frac{k}{6} [/tex]
[tex]k=2.5*6[/tex]
[tex]k=15[/tex]
The value of y when x = 4
[tex]y = \frac{15}{x} [/tex]
[tex]y= \frac{15}{4} [/tex]
[tex]y=3.75[/tex]
[tex]y= \frac{k}{x} [/tex]
We need to work out the constant, k, by substituting x = 6 and y = 2.5
[tex]2.5= \frac{k}{6} [/tex]
[tex]k=2.5*6[/tex]
[tex]k=15[/tex]
The value of y when x = 4
[tex]y = \frac{15}{x} [/tex]
[tex]y= \frac{15}{4} [/tex]
[tex]y=3.75[/tex]