YukkiD
contestada

In △ABC, the coordinates of vertices A and B are A(1,−1) and B(3,2).
For each of the given coordinates of vertex C, is △ABC a right triangle?

Select Right Triangle or Not a Right Triangle for each set of coordinates.
C(0,2)
C(3,−1)
C(0,4)

Respuesta :

we know that

the formula to calculate the distance between two points is equal to


[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]


In this problem we have

[tex]A(1,-1)\ B(3,2)\ C1(0,2)\ C2(3,-1)\ C3(0,4)[/tex]

Step 1

Find the distance AB

[tex]A(1,-1)\ B(3,2)[/tex]

Substitute the values in the formula

[tex]d=\sqrt{(2+1)^{2}+(3-1)^{2}}[/tex]


[tex]d=\sqrt{(3)^{2}+(2)^{2}}[/tex]


[tex]dAB=\sqrt{13}\ units[/tex]


Step 2

Find the distance AC1

[tex]A(1,-1)\ C1(0,2)[/tex]

Substitute the values in the formula

[tex]d=\sqrt{(2+1)^{2}+(0-1)^{2}}[/tex]


[tex]d=\sqrt{(3)^{2}+(-1)^{2}}[/tex]


[tex]dAC1=\sqrt{10}\ units[/tex]


Step 3

Find the distance BC1

[tex]B(3,2)\ C1(0,2)[/tex]

Substitute the values in the formula

[tex]d=\sqrt{(2-2)^{2}+(0-3)^{2}}[/tex]


[tex]d=\sqrt{(0)^{2}+(-3)^{2}}[/tex]


[tex]dBC1=3\ units[/tex]


Step 4

Find the distance AC2

[tex]A(1,-1)\ C2(3,-1)[/tex]

Substitute the values in the formula

[tex]d=\sqrt{(-1+1)^{2}+(3-1)^{2}}[/tex]


[tex]d=\sqrt{(0)^{2}+(2)^{2}}[/tex]


[tex]dAC2=2\ units[/tex]


Step 5

Find the distance BC2

[tex]B(3,2)\ C2(3,-1)[/tex]

Substitute the values in the formula

[tex]d=\sqrt{(-1-2)^{2}+(3-3)^{2}}[/tex]


[tex]d=\sqrt{(-3)^{2}+(0)^{2}}[/tex]


[tex]dBC2=3\ units[/tex]  

Step 6

Find the distance AC3

[tex]A(1,-1)\ C3(0,4)[/tex]

Substitute the values in the formula

[tex]d=\sqrt{(4+1)^{2}+(0-1)^{2}}[/tex]


[tex]d=\sqrt{(5)^{2}+(-1)^{2}}[/tex]


[tex]dAC3=\sqrt{26}\ units[/tex]


Step 7

Find the distance BC3

[tex]B(3,2)\ C3(0,4)[/tex]

Substitute the values in the formula

[tex]d=\sqrt{(4-2)^{2}+(0-3)^{2}}[/tex]


[tex]d=\sqrt{(2)^{2}+(-3)^{2}}[/tex]


[tex]dBC3=\sqrt{13}\ units[/tex]


we know that

If the length sides of the triangle satisfy the Pythagoras Theorem. then the triangle is a right triangle

The formula of the Pythagoras Theorem is equal to

[tex]c^{2} =a^{2}+b^{2}[/tex]

where

c is the hypotenuse (the greater side)

a and b are the legs of the triangle

Step 8

Verify if the triangle ABC1 is a right triangle

we have

[tex]dAB=\sqrt{13}\ units[/tex]


[tex]dAC1=\sqrt{10}\ units[/tex]


[tex]dBC1=3\ units[/tex]


Applying Pythagoras theorem

[tex]AB^{2}=AC1^{2}+BC1^{2}[/tex]

[tex]\sqrt{13}^{2} =\sqrt{10}^{2}+3^{2}[/tex]

[tex]13 =10+9[/tex]

[tex]13 =19[/tex] --------> is not true

therefore

the triangle ABC1 is not a right triangle

Step 9

Verify if the triangle ABC2 is a right triangle

we have

[tex]dAB=\sqrt{13}\ units[/tex]


[tex]dAC2=2\ units[/tex]


[tex]dBC2=3\ units[/tex]


Applying Pythagoras theorem

[tex]AB^{2}=AC2^{2}+BC2^{2}[/tex]

[tex]\sqrt{13}^{2} =2^{2}+3^{2}[/tex]

[tex]13 =4+9[/tex]

[tex]13 =13[/tex] --------> is true

therefore

the triangle ABC2 is a right triangle

Step 10

Verify if the triangle ABC3 is a right triangle

we have

[tex]dAB=\sqrt{13}\ units[/tex]


[tex]dAC3=\sqrt{26}\ units[/tex]


[tex]dBC3=\sqrt{13}\ units[/tex]


Applying Pythagoras theorem

[tex]AC3^{2}=AB^{2}+BC3^{2}[/tex]

[tex]\sqrt{26}^{2} =\sqrt{13}^{2}+\sqrt{13}^{2}[/tex]

[tex]26 =13+13[/tex]

[tex]26=26[/tex] --------> is true

therefore

the triangle ABC3 is a right triangle

therefore

the answer is

[tex]C(0,2)\ Not\ a\ right\ triangle\\C(3,-1)\ A\ right\ triangle\\C(0,4)\ A\ right\ triangle[/tex]

Answer:

C(0,2)  Not a Right Triangle

C(3,−1)  Right Triangle

C(0,4) Right Triangle

Step-by-step explanation:

Verified correct with test results.