Respuesta :

W0lf93
Px = 0 Py = 2mV second, Px = mVcosφ Py = –mVsinφ add the components Rx = mVcosφ Ry = 2mV – mVsinφ Magnitude of R = âš(Rx² + Ry²) = âš((mVcosφ)² + (2mV – mVsinφ)²) and speed is R/3m = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²) simplifying Vf = (1/3m)âš((mVcosφ)² + (2mV – mVsinφ)²) Vf = (1/3)âš((Vcosφ)² + (2V – Vsinφ)²) Vf = (V/3)âš((cosφ)² + (2 – sinφ)²) Vf = (V/3)âš((cos²φ) + (4 – 2sinφ + sin²φ)) Vf = (V/3)âš(cos²φ) + (4 – 2sinφ + sin²φ)) using the identity sin²(Ď)+cos²(Ď) = 1 Vf = (V/3)âš1 + 4 – 2sinφ) Vf = (V/3)âš(5 – 2sinφ)