Use the divergence theorem to calculate the surface integral z s ~f d~s ; that is, calculate the ux of ~f across s, where ~f = z~i + y~j + zx~k; and s is the surface of the tetrahedron enclosed by the coordinate planes and the plane x a + y b + z c = 1 with a; b; c > 0.

Respuesta :

By the divergence theorem,

[tex]\displaystyle\iint_S\mathbf f\cdot\mathrm d\mathbf S=\iiint_R(\nabla\cdot\mathbf f)\,\mathrm dV[/tex]

where [tex]R[/tex] is the solid whose boundary is [tex]S[/tex]. We have

[tex]\nabla\cdot\mathbf f=\dfrac{\partial z}{\partial x}+\dfrac{\partial y}{\partial y}+\dfrac{\partial zx}{\partial z}=1+x[/tex]

so we set up the volume integral as

[tex]\displaystyle\iiint_R(\nabla\cdot\mathbf f)\,\mathrm dV=\int_{x=0}^{x=1/a}\int_{y=0}^{y=(1-ax)/b}\int_{z=0}^{z=(1-ax-by)/c}(1+x)\,\mathrm dz\,\mathrm dy\,\mathrm dx[/tex]
[tex]=\dfrac{4a+1}{24a^2bc}[/tex]