To calculate the distance between two points, we can use a formula that is a variation Pythagorean Theorem. Look:
[tex]\mathsf{d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}[/tex]
"d" represents the distance and coordinates are expressed as follows: (x, y)
Let's go to the calculations.
[tex]\mathsf{d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}\\\\ \mathsf{d=\sqrt{(3-(-3))^2+(8-0)^2}}\\\\ \mathsf{d=\sqrt{(3+3)^2+(8)^2}}\\\\ \mathsf{d=\sqrt{(6)^2+64}}\\\\ \mathsf{d=\sqrt{36+64}}\\\\ \mathsf{d=\sqrt{100}}\\\\ \underline{\mathsf{d=10}}[/tex]
The answer is 10 uc.