Match each step with the property used to get to that step. (Note: the column that lists the algebraic expressions is already in the correct order.)

(6x+3)-5x


1.(3+6x)-5x. Commutative
2. 3+(6x-5x). Multiplicative identity.
3. 3+(6-5)x. Associative
4. 3+(1)x. Subtraction
5. 3+x. Distributive


I WILL MARK BRAINLIEST

Respuesta :

(6x + 3) - 5x

(3 + 6x) - 5x.....commutative
3 + (6x - 5x).....associative
3 + (6 - 5)x...distributive
3 + 1x....subtraction
3 + x....multiplicative identity

Answer:

Commutative property:

a+b= b+a for any a and b

Multiplicative identity:

[tex]a \cdot 1 = 1 \cdot a[/tex] for any a.

Associative property:

a+(b+c) = (a+b)+c for any a, b and c

Distributive property:

[tex]a \cdot (b+c) = a\cdot b+ a\cdot c[/tex]

Given the equation:

[tex](6x+3)-5x[/tex]

1.

Using commutative property:

[tex](3+6x)-5x[/tex]

2.

Using associative property.

[tex]3+(6x-5x)[/tex]

3.

Using distributive property:

[tex]3+(6-5)x[/tex]

4.

using subtraction.

[tex]3+(1)x[/tex]

5.

Using Multiplicative identity:

[tex]3+x[/tex]

Now, match each step with the property used to get to that step are as follow:

1. [tex](3+6x)-5x[/tex]           [Commutative property]

2. [tex]3+(6x-5x)[/tex]           [Associative property]

3. [tex]3+(6-5)x[/tex]             [Distributive property]

4.  [tex]3+(1)x[/tex]                  [Subtraction]

5. [tex]3+x[/tex]                     [Multiplicative property]