Respuesta :
Steps
x^2 - 10x -24/x^2 - 3x - 108
First, factor x^2 - 10x -24: (x + 2)(x - 12)
= (x + 2)(x - 12)/x^2 - 3x - 108
Second, factor x^2 - 3x - 108: (x + 9)(x - 12)
= (x + 2)(x - 12)/(x + 9)(x - 12)
Third, cancel the common factor: x - 12
= x + 2/x + 9
x^2 - 10x -24/x^2 - 3x - 108
First, factor x^2 - 10x -24: (x + 2)(x - 12)
= (x + 2)(x - 12)/x^2 - 3x - 108
Second, factor x^2 - 3x - 108: (x + 9)(x - 12)
= (x + 2)(x - 12)/(x + 9)(x - 12)
Third, cancel the common factor: x - 12
= x + 2/x + 9
The restrictions on the variable are [tex](x+9)\neq 0[/tex] and [tex]x\neq 9[/tex] .
What are restrictions on the variable?
Restrictions on the variable: So, we can never divide by [tex]0[/tex], hence, a restriction on the variable of a rational function with a linear denominator would be any value of the variable that makes the linear denominator equal to [tex]0[/tex].
We have,
[tex]\frac{ (x^2-10x-24)}{(x^2-3x-108)}[/tex]
Now,
Find the factors of Numerator first and then Denominator;
i.e.
Factors of [tex]x^2-10x-24[/tex] ;
[tex]x^2-10x-24[/tex]
Using the middle term split method,
[tex]x^2+2x-12x-24[/tex]
[tex]x(x+2)-12(x+2)[/tex]
[tex](x+2)(x-12)[/tex]
Now,
Factors of [tex]x^2-3x-108[/tex];
[tex]x^2-3x-108[/tex]
[tex]x^2-12x+9x-108[/tex]
[tex]x(x-12)+9(x-12)[/tex]
[tex](x-12)(x+9)[/tex]
Now, rewrite [tex]\frac{ (x^2-10x-24)}{(x^2-3x-108)}[/tex] this in factors form,
i.e.
[tex]\frac{(x+2)(x-12)}{(x-12)(x+9)}[/tex]
Dividing [tex](x-12)[/tex] we get,
⇒ [tex]\frac{(x+2)}{(x+9)}[/tex]
So, this is the simplified form of the given expression.
We know that,
Denominator of any expression can not be zero,
so,
[tex](x+9)\neq 0[/tex] and [tex]x\neq 9[/tex]
so, these are the restrictions on the variable.
Hence, we can say that the restrictions on the variable are [tex](x+9)\neq 0[/tex] and [tex]x\neq 9[/tex] .
To know more about restrictions on the variable click here
https://brainly.com/question/10957504
#SPJ3