Number 8 please, What are the coordinates of point C below segment AC that is partitioned at point B in a ratio of 2 to 5.

Answer:
[tex](\frac{31}{2},0)[/tex]
Step-by-step explanation:
From the given figure it is clear that the coordinates of points are A(5,0) and B(8,0).
Let the coordinates of C are (a,b).
Section formula:
If a point K divides a line segment PQ in m:n and end point of segment are [tex]P(x_1,y_1)[/tex] and [tex]Q(x_2,y_2)[/tex], then the coordinates of point K are
[tex]K=(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n})[/tex]
It is given that point B divides the line AC in 2:5.
Using section formula the coordinates of B are
[tex]B=(\dfrac{(2)(a)+(5)(5)}{2+5},\dfrac{(2)(b)+(5)(0)}{2+5})[/tex]
[tex]B=(\dfrac{2a+25}{7},\dfrac{2b}{7})[/tex]
We know that B(8,0).
[tex](8,0)=(\dfrac{2a+25}{7},\dfrac{2b}{7})[/tex]
On comparing both sides we get
[tex]8=\dfrac{2a+25}{7}[/tex]
[tex]56=2a+25[/tex]
[tex]56-25=2a[/tex]
[tex]31=2a[/tex]
[tex]\frac{31}{2}=a[/tex]
Similarly,
[tex]0=\dfrac{2b}{7}\Rightarrow 0=2b\Rightarrow b=0[/tex]
Therefore, the coordinates of C are [tex](\frac{31}{2},0)[/tex].