Respuesta :

x²-10x+25=35
(x-5)²=35
x-5=±√35
x=5±√35

Answer:

A quadratic equation in the form of [tex]ax^2+bx+c = 0[/tex]....[1], then the solution of the equation is given by:

[tex]x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}[/tex]

Given the equation:

[tex]x^2-10x+25=35[/tex]

Subtract 35 from both sides we have;

[tex]x^2-10x-10=0[/tex]

On comparing with [1] we have;

a = 1 , b = -10 and c = -10

then;

[tex]x = \frac{-(-10) \pm \sqrt{(-10)^2-4(1)(-10)}}{2(1)}[/tex]

⇒[tex]x = \frac{10 \pm \sqrt{100+40}}{2}[/tex]

⇒[tex]x = \frac{10 \pm \sqrt{140}}{2}[/tex]

Simplify:

[tex]x = \frac{10 \pm 2\sqrt{35}}{2}[/tex]

⇒[tex]x = 5 \pm \sqrt{35}[/tex]

Therefore, the value of x are:

[tex]x = 5+ \sqrt{35}[/tex] and [tex]x = 5-\sqrt{35}[/tex]