Function f is shown in the table.

What type of function is function f?



linear

exponential

neither linear nor exponential



The table is:
x f(x)
−5 8192
​−3​ 512
​−1​ 32
1 2
3 18

Respuesta :

Answer:

The correct option is 2. The given function is an exponential function.

Step-by-step explanation:

From the given table it is noticed that the rate of change is not constant, therefore it is not a linear function.

The general form of an exponential function is

[tex]f(x)=ab^x[/tex]

From the given table it is noticed that the function passing through the points (1,2) and [tex](3,\frac{1}{8})[/tex]. It means the equation must be satisfy by these points.

[tex]2=ab^1[/tex]                  ..... (1)

[tex]\frac{1}{8}=ab^3[/tex]               ..... (2)

Divide equation (2) by equation (1).

[tex]\frac{1}{16}=b^2[/tex]

[tex]\frac{1}{4}=b[/tex]

Put this value in equation (1).

[tex]2=a\frac{1}{4}[/tex]

[tex]a=8[/tex]

The function is

[tex]f(x)=8(\frac{1}{4})^x[/tex]

Check the above equation by remaining points.

[tex]f(-5)=8(\frac{1}{4})^{-5}=8\times 1024=8192[/tex]

[tex]f(-3)=8(\frac{1}{4})^{-3}=8\times 64=512[/tex]

[tex]f(-1)=8(\frac{1}{4})^{-1}=8\times 4=32[/tex]

Since all the point satisfy the function, therefore the given function is an exponential function. Option 2 is correct.

Answer:

Exponential

Step-by-step explanation:

Here, the given table,

x           −5       −3​      ​−1​             1             3

f(x)       8192         512          32           2            18,

we know that, a linear function changes at a constant rate,

Here, the rate of change is not constant,

Because,

[tex]\frac{ 512-8192}{-3+5}\neq \frac{32-512}{-1+32}\neq \frac{2-32}{1+1}\neq \frac{18-2}{3-1}[/tex]

Thus, the function can not be linear,

Now, let us consider the given function f is exponential,

That is,

[tex]f(x)=ab^x[/tex]

By the table, for x = 1, f(x) = 2,

[tex]\implies 2 = ab[/tex]

Also, for x = 3, f(x) = 1/8,

[tex]\implies \frac{1}{8}= ab^3\implies \frac{1}{8} = (2)b^2\implies \frac{1}{16} = b^2\implies b=\frac{1}{4}[/tex]    

[tex]\implies a = 8[/tex]

Thus, the exponential function would be,

[tex]f(x)=8(\frac{1}{4})^x[/tex] -----(1)

Now,

[tex]f(-5)=8(\frac{1}{4})^{-5}=8192[/tex]

[tex]f(-3)=8(\frac{1}{4})^{-3}=512[/tex]

[tex]f(-1)=8(\frac{1}{4})^{-1}=32[/tex]

Since, all the given points of the table satisfying the exponential function (1),

Hence, function f is exponential.