Respuesta :

The answer to this equation is C.
C. (x + 7)2 – 47

Answer:

The new function is [tex]f(x)=(x+7)^2-47[/tex].

Step-by-step explanation:

The given function is

[tex]f(x)=x^2+22x+58[/tex]

[tex]f(x)=(x^2+22x)+58[/tex]

To find the vertex from add and subtract [tex](-\frac{b}{2a})^2[/tex] in the parenthesis.

[tex](-\frac{b}{2a})^2=(-\frac{22}{2(1)})^2=11^2[/tex]

[tex]f(x)=(x^2+22x+11^2-11^2)+58[/tex]

[tex]f(x)=(x^2+22x+11^2)-121+58[/tex]

[tex]f(x)=(x+11)^2-63[/tex]              [tex][\because (a+b)^2=a^2+2ab+b^2][/tex]

The vertex of the given function is (-11,-63).

It is given that the function f(x) is translated 4 units to the right and 16 units up.

[tex](x,y)\rightarrow (x+4,y+16)[/tex]

[tex](-11,-63)\rightarrow (-11+4,-63+16)=(-7,-47)[/tex]

The vertex of new function is (-7.-47). So the new function is

[tex]f(x)=(x+7)^2-47[/tex]