Respuesta :

frika

Given the polynomial function [tex]f(x)=x^3-12x^2+41x-42.[/tex]

The integer zeros should be divisors of free term -42.

The divisors of -42 are:

[tex]\pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21, \pm 42.[/tex]

If some of these number is zero of f(x), then f takes 0 value at this point.

Check them:

[tex]f(1)=1^3-12\cdot 1^2 + 41\cdot 1-42=1-12+41-42=-12\neq 0;[/tex]

[tex]f(-1)=(-1)^3-12\cdot (-1)^2 + 41\cdot (-1)-42=-1-12-41-42=-96\neq 0;[/tex]

[tex]f(2)=2^3-12\cdot 2^2 + 41\cdot 2-42=8-48+82-42=0;[/tex]

[tex]f(-2)=(-2)^3-12\cdot (-2)^2 + 41\cdot (-2)-42=-8-48-82-42=-180\neq 0;[/tex]

[tex]f(3)=3^3-12\cdot 3^2 + 41\cdot 3-42=27-108+123-42=0;[/tex]

[tex]f(-3)=(-3)^3-12\cdot (-3)^2 + 41\cdot (-3)-42=-27-108-123-42=-300\neq 0;[/tex]

[tex]f(6)=6^3-12\cdot 6^2 + 41\cdot 6-42=216-432+246-42=-12\neq 0;[/tex]

[tex]f(-6)=(-6)^3-12\cdot (-6)^2 + 41\cdot (-6)-42=-216-432-246-42=-936\neq 0;[/tex]

[tex]f(7)=7^3-12\cdot 7^2 + 41\cdot 7-42=343-588+287-42=0.[/tex]

Since the third degree polynomial function may have only 3 zeros, then you can end this process and state that zeros are 2, 3 and 7, because f(2)=0, f(3)=0 and f(7)=0.

Answer: correct choice is C

Answer: Zeroes are,

7, 3, 2

Step-by-step explanation:

Here, the given cubic equation,

[tex]f(x) = x^3 - 12x^2 + 41x - 42[/tex]

Since, at x = 7,

[tex]f(7)=(7)^3-12\times 7^2+41\times 7 - 42 = 343 - 12\times 49 +287 - 42 = 343 - 588 + 245=0[/tex]

Thus, 7 is one of the zeroes of f(x),

⇒ x - 7 is a factor of f(x),

By the long division method ( shown below ),

We found that,

[tex]x^3 - 12x^2 + 41x - 42=(x-7)(x^2-5x+6)[/tex]

[tex]=(x-7)(x^2-3x-2x+6)[/tex] ( By middle term splitting )

[tex]=(x-7)(x(x-3)-2(x-3))[/tex]

[tex]=(x-7)(x-3)(x-2)[/tex]

For finding the zeroes, f(x) = 0,

[tex](x-7)(x-3)(x-2)=0[/tex]

⇒ x -7 =0 or x-3 =0 or x-2 =0

x = 7 or 3 or 2

Ver imagen parmesanchilliwack