Respuesta :

(60/360)(pi)(36)= 6pi or 18.84

we know that

The area of the circle is equal to

[tex]A=\pi r^{2}[/tex]

where

r is the radius of the circle

In this problem we have

[tex]r=6\ cm[/tex]

Substitute the value of r in the formula

[tex]A=\pi (6^{2})=113.10\ cm^{2}[/tex]

Remember that

The area of [tex]113.10\ cm^{2}[/tex] subtends the complete circle of [tex]360\°[/tex]

so

by proportion

Find the area for the shaded sector of [tex]60\°[/tex]

[tex]\frac{113.10}{360} \frac{cm^{2} }{degrees}=\frac{x}{60} \frac{cm^{2} }{degrees} \\ \\x=60*113.10/360 \\ \\x= 18.85\ cm^{2}[/tex]

therefore

The answer is

The approximate area of the shaded sector is [tex]18.85\ cm^{2}[/tex]