PLEASE HELP!!!
what is the length of segment SR? units

The length of segment SR is [tex]12[/tex].
According to the question,
[tex]TQ=TR[/tex] (Given)
[tex]\angle T=90[/tex] degree
Let [tex]TS=x[/tex]
and, [tex]TR=y[/tex]
also, [tex]TQ=y[/tex]
Apply Pythagoras theorem in triangle [tex]RTS[/tex] as-
[tex]RS^{2} =TR^2+TS^2[/tex]
[tex](2x+8)^2=y^2+x^2[/tex]-----------eq [tex]1[/tex]
Apply Pythagoras theorem in triangle [tex]STQ[/tex] as-
[tex]QS^{2} =TQ^2+TS^2[/tex]
[tex](8x-4)^2=y^2+x^2[/tex]-----------eq [tex]2[/tex]
Equate equations [tex]1\; and \; 2[/tex],
[tex](2x+8)^2=(8x-4)^2[/tex]
Square the above equation,
[tex](2x+8)=(8x-4)\\8x-2x=8+4\\6x=12\\x=2[/tex]
The value of the length of the segment SR is-
[tex]SR=2x+8\\SR=2\times2 + 8\\SR=12[/tex]
The length of segment SR is [tex]12[/tex].
Learn more about Pythagoras theorem here:
https://brainly.com/question/10174253?referrer=searchResults