Respuesta :
[tex] x^{2} [/tex](6[tex] x^{2} [/tex] - 5) + 2(6[tex] x^{2} [/tex] - 5
(6[tex] x^{2} [/tex] - 5) ([tex] x^{2} [/tex] + 2)
Answer: D).
(6[tex] x^{2} [/tex] - 5) ([tex] x^{2} [/tex] + 2)
Answer: D).
Answer: The correct option is (D) [tex](6x^2-5)](x^2+2).[/tex]
Step-by-step explanation: We are given to factorize the following polynomial expression of degree 4 by grouping :
[tex]P(x)=6x^4-5x^2+12x^2-10.[/tex]
Let x² = y, then the given expression becomes
[tex]P(x)\\\\=6x^4-5x^2+12x^2-10\\\\=6y^2-5y+12y-10\\\\=y(6y-5)+2(6y-5)\\\\=(6y-5)(y+2)\\\\=(6x^2-5)(x^2+2).[/tex]
Thus, the required factorized form is [tex](6x^2-5)(x^2+2).[/tex]
Option (D) is CORRECT.