Respuesta :

[tex] x^{2} [/tex](6[tex] x^{2} [/tex] - 5) + 2(6[tex] x^{2} [/tex] - 5
(6[tex] x^{2} [/tex] - 5) ([tex] x^{2} [/tex] + 2)

Answer: D).

Answer:  The correct option is (D) [tex](6x^2-5)](x^2+2).[/tex]

Step-by-step explanation:  We are given to factorize the following polynomial expression of degree 4 by grouping :

[tex]P(x)=6x^4-5x^2+12x^2-10.[/tex]

Let x² = y, then the given expression becomes

[tex]P(x)\\\\=6x^4-5x^2+12x^2-10\\\\=6y^2-5y+12y-10\\\\=y(6y-5)+2(6y-5)\\\\=(6y-5)(y+2)\\\\=(6x^2-5)(x^2+2).[/tex]

Thus, the required factorized form is [tex](6x^2-5)(x^2+2).[/tex]

Option (D) is CORRECT.