Respuesta :
The temperature falls from 0 degrees to -12 1/4 degrees in 3 1/2
The expression to find the change in temperature per hour
[tex] \frac{0-(-12 \frac{1}{4})}{3 \frac{1}{2}} [/tex]
So, the change in temperature = [tex] \frac{0-(-12 \frac{1}{4})}{3 \frac{1}{2}} = \frac{12 \frac{1}{4}}{3 \frac{1}{2}} = \frac{ \frac{49}{4}}{ \frac{7}{2}} = \frac{49*2}{7*4}= \frac{7}{2}=3.5 [/tex] degree/hour
The expression to find the change in temperature per hour
[tex] \frac{0-(-12 \frac{1}{4})}{3 \frac{1}{2}} [/tex]
So, the change in temperature = [tex] \frac{0-(-12 \frac{1}{4})}{3 \frac{1}{2}} = \frac{12 \frac{1}{4}}{3 \frac{1}{2}} = \frac{ \frac{49}{4}}{ \frac{7}{2}} = \frac{49*2}{7*4}= \frac{7}{2}=3.5 [/tex] degree/hour
The change in temperature is -3 1/2 degree per hour
How to determine the change in temperature?
The given parameters are:
Temperature = -12 1/4 degrees
Time = 3 1/2 hours
The change in temperature per hour is calculated as:
Change = Temperature/Time
This gives
Change = -12 1/4 degrees / 3 1/2 hours
Evaluate the quotient
Change = -3 1/2 degree per hours
Hence, the change in temperature is -3 1/2 degree per hour
Read more about rates at:
https://brainly.com/question/11258929
#SPJ5