Respuesta :
(4,-1),(-2,3)
slope = (3 - (-1) / (-2 - 4) = -4/6 = -2/3
y = mx + b
slope(m) = -2/3
use either of ur points...(4,-1)...x = 4 and y = -1
now sub into the formula and find b, the y int
-1 = -2/3(4) + b
-1 = -8/3 + b
-1 + 8/3 = b
-3/3 + 8/3 = b
5/3 = b
so ur equation is : y = -2/3x + 5/3
slope = (3 - (-1) / (-2 - 4) = -4/6 = -2/3
y = mx + b
slope(m) = -2/3
use either of ur points...(4,-1)...x = 4 and y = -1
now sub into the formula and find b, the y int
-1 = -2/3(4) + b
-1 = -8/3 + b
-1 + 8/3 = b
-3/3 + 8/3 = b
5/3 = b
so ur equation is : y = -2/3x + 5/3
Answer:
The equation of line is [tex]y=-\frac{2}{3}(x)+\frac{5}{3}[/tex].
Step-by-step explanation:
If a line passes though two points then the equation of line is
[tex]y-y_1=\frac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]
The line passes through the points (4, -1) and (-2, 3), so the equation of line is
[tex]y-(-1)=\frac{3-(-1)}{-2-4}(x-4)[/tex]
On simplification we get
[tex]y+1=\frac{3+1}{-6}(x-4)[/tex]
[tex]y+1=\frac{4}{-6}(x-4)[/tex]
[tex]y+1=-\frac{2}{3}(x-4)[/tex]
Using distributive property,
[tex]y+1=-\frac{2}{3}(x)-\frac{2}{3}(-4)[/tex]
[tex]y+1=-\frac{2}{3}(x)+\frac{8}{3}[/tex]
Subtract from both the sides.
[tex]y=-\frac{2}{3}(x)+\frac{8}{3}-1[/tex]
[tex]y=-\frac{2}{3}(x)+\frac{5}{3}[/tex]
Therefore the he equation of line is [tex]y=-\frac{2}{3}(x)+\frac{5}{3}[/tex].