Respuesta :
[tex]\displaystyle\int\frac{(\ln x)^{44}}x\,\mathrm dx[/tex]
[tex]y=\ln x\implies\mathrm dy=\dfrac{\mathrm dx}x[/tex]
[tex]\displaystyle\int y^{44}\,\mathrm dy=\frac{y^{45}}{45}+C[/tex]
[tex]\displaystyle\int\frac{(\ln x)^{44}}x\,\mathrm dx=\frac{(\ln x)^{45}}{45}+C[/tex]
[tex]y=\ln x\implies\mathrm dy=\dfrac{\mathrm dx}x[/tex]
[tex]\displaystyle\int y^{44}\,\mathrm dy=\frac{y^{45}}{45}+C[/tex]
[tex]\displaystyle\int\frac{(\ln x)^{44}}x\,\mathrm dx=\frac{(\ln x)^{45}}{45}+C[/tex]
The value of the integral is (ln x)^45/45 + c.
What is an integration?
The integration is the inverse process of differentiation. The integration is the process of finding the anti derivative of a function. Integration is used to add small and discrete data, which cannot be added singularly and representing in a single value.
For the given situation,
Evaluation of integral [(ln x)^44/x]dx
⇒ [tex]\int\limits{\frac{(ln x)^{44}}{x} \, dx[/tex]
Consider [tex]y=ln x[/tex], differentiate with respect to x
⇒ [tex]dy=\frac{1}{x} dx[/tex]
Substitute these values on the integral,
⇒ [tex]\int\limits {y^{44} } \, dy[/tex]
⇒ [tex]\frac{y^{45} }{45} +c[/tex]
⇒ [tex]\frac{(lnx)^{45} }{45} +c[/tex]
Hence we can conclude that the value of the integral is (ln x)^45/45 + C.
Learn more about integrals here
https://brainly.com/question/18125359
#SPJ2