Respuesta :
[tex]\bf x^4+xy^3+x^3+y^3\impliedby \textit{now let's do some grouping}
\\\\\\
(x^4+xy^3)~~+~~(x^3+y^3)\implies x(x^3+y^3)~~+~~(x^3+y^3)
\\\\\\
\stackrel{\stackrel{common}{factor}}{(x^3+y^3)}(x+1)\\\\
-------------------------------\\\\
\textit{now recall that }\qquad \qquad \textit{difference of cubes}
\\ \quad \\
a^3+b^3 = (a+b)(a^2-ab+b^2)\qquad
a^3-b^3 = (a-b)(a^2+ab+b^2)\\\\
-------------------------------\\\\
(x+y)(x^2-xy+y^2)(x+1)[/tex]
Answer:
This is just the answer key.
Step-by-step explanation:
Hope this helps:) Have a good day!
