Respuesta :

[tex]\bf x^4+xy^3+x^3+y^3\impliedby \textit{now let's do some grouping} \\\\\\ (x^4+xy^3)~~+~~(x^3+y^3)\implies x(x^3+y^3)~~+~~(x^3+y^3) \\\\\\ \stackrel{\stackrel{common}{factor}}{(x^3+y^3)}(x+1)\\\\ -------------------------------\\\\ \textit{now recall that }\qquad \qquad \textit{difference of cubes} \\ \quad \\ a^3+b^3 = (a+b)(a^2-ab+b^2)\qquad a^3-b^3 = (a-b)(a^2+ab+b^2)\\\\ -------------------------------\\\\ (x+y)(x^2-xy+y^2)(x+1)[/tex]

Answer:

This is just the answer key.

Step-by-step explanation:

Hope this helps:) Have a good day!

Ver imagen cordeliaeobermiller1