Respuesta :
Answer:
[tex](3a)^{-2}[/tex] = [tex]\frac{1}{9(a)^{2} }[/tex].
Step-by-step explanation:
Given : [tex](3a)^{-2}[/tex].
To find : Equivalent expression .
Solution : We have given that [tex](3a)^{-2}[/tex].
By the negative exponent rule : [tex]x^{-m}[/tex] = [tex]\frac{1}{x^{m} }[/tex].
On applying this rule ,
[tex](3a)^{-2}[/tex] = [tex]\frac{1}{(3a)^{2} }[/tex].
[tex](3a)^{-2}[/tex] = [tex]\frac{1}{9(a)^{2} }[/tex].
Therefore, [tex](3a)^{-2}[/tex] = [tex]\frac{1}{9(a)^{2} }[/tex].