Respuesta :

1/9a^2
that is the answer

Answer:

[tex](3a)^{-2}[/tex]  =  [tex]\frac{1}{9(a)^{2} }[/tex].

Step-by-step explanation:

Given : [tex](3a)^{-2}[/tex].

To find : Equivalent expression .

Solution : We have given that [tex](3a)^{-2}[/tex].

By the negative exponent rule : [tex]x^{-m}[/tex] = [tex]\frac{1}{x^{m} }[/tex].

On applying this rule ,

[tex](3a)^{-2}[/tex] =  [tex]\frac{1}{(3a)^{2} }[/tex].

[tex](3a)^{-2}[/tex]  =  [tex]\frac{1}{9(a)^{2} }[/tex].

Therefore,  [tex](3a)^{-2}[/tex]  =  [tex]\frac{1}{9(a)^{2} }[/tex].