Respuesta :

Pasta0
So, that's
[tex] {8}^{ \frac{1}{2} } \times {x}^{ \frac{1}{2} } \times {y}^{ \frac{3}{4} } [/tex]

*Helpful To Know
[tex]{5}^{ \frac{1}{2} } = \sqrt{5} \\ {5}^{ \frac{1}{3} } = \sqrt[3]{5} \\ {5}^{ \frac{1}{4} } = \sqrt[4]{5} \\ {5}^{ \frac{3}{2} } = \sqrt{ {5}^{3} } \: \: or \: {( \sqrt{5} )}^{3} [/tex]
----------------------------------------------------------------

*Assuming that you want to covert to radicals

[tex]( \sqrt{8} )( \sqrt{x} )( \sqrt[4]{ {y}^{3} } )[/tex]
*Simplify

[tex]( \sqrt{8x} )( \sqrt[4]{ {y}^{3} } )[/tex]