Evaluate each of the integrals (here δ(t) is the dirac delta function) (1) ∫∞−∞e5tδ(t−2)dt= (2) ∫∞−∞cos(2t)δ(t−5)dt= (3) ∫∞0e−stcos(3t)δ(t−2)dt= (4) ∫∞0e−stt3sin(t)δ(t−3)dt\)=

Respuesta :

[tex]\delta(x)[/tex] has the property that for any continuous [tex]f[/tex] with support in [tex]\mathbb R[/tex],

[tex]\displaystyle\int_{-\infty}^\infty f(x)\delta(x-c)\,\mathrm dx=f(c)[/tex]

where [tex]c\in\mathbb R[/tex]. So we have

[tex]\displaystyle\int_{-\infty}^\infty e^{5t}\delta(t-2)\,\mathrm dt=e^{10}[/tex]

[tex]\displaystyle\int_{-\infty}^\infty\cos2t\,\delta(t-5)\,\mathrm dt=\cos10[/tex]

The remaining two integrals are identical to the Laplace transforms of [tex]\cos3t\,\delta(t-2)[/tex] and [tex]t^3\sin t\,\delta(t-3)[/tex]. For these, we have the property that

[tex]\mathcal L_s\{f(t)\delta(t-c)\}=f(c)e^{-sc}[/tex]

so we get

[tex]\displaystyle\int_0^\infty e^{-st}\cos3t\,\delta(t-2)\,\mathrm dt=\mathcal L_s\{\cos3t\,\delta(t-2)\}=\cos6\,e^{-2s}[/tex]

[tex]\displaystyle\int_0^\infty e^{-st}t^3\sin t\,\delta(t-3)\,\mathrm dt=\mathcal L_s\{t^3\sin t\,\delta(t-3)\}=27\sin3\,e^{-3s}[/tex]