Multiply.

43√⋅1012−−√⋅6√⋅2√



Enter your answer, in simplest radical form, in the box.
(Picture of the equation just in case it copied it wrong)

Multiply 43101262 Enter your answer in simplest radical form in the box Picture of the equation just in case it copied it wrong class=

Respuesta :

The main rules that we use here are :

i) [tex] \sqrt{a \cdot b}= \sqrt{a} \cdot \sqrt{b} [/tex] for nonnegative values a and b.

ii) [tex] \sqrt{a} \cdot \sqrt{a} =a[/tex].


Thus, first 'decompose' the numbers in the radicals into prime factors:

[tex]4 \sqrt{3} \cdot 10 \cdot \sqrt{2\cdot2\cdot3}\cdot \sqrt{2\cdot 3}\cdot \sqrt{2}. [/tex].

By rule (i) we write:

[tex]4 \sqrt{3} \cdot 10 \cdot \sqrt{2}\cdot \sqrt{2}\cdot \sqrt{\cdot3}\cdot \sqrt{2} \cdot \sqrt{3} \cdot \sqrt{2}[/tex].

We can collect these terms as follows:

[tex]40 \sqrt{3}\cdot (\sqrt{3}\cdot \sqrt{3}) \cdot (\sqrt{2}\cdot \sqrt{2}) \cdot( \sqrt{2} \cdot \sqrt{2})[/tex], and by rule (ii) we have:

[tex]40 \sqrt{3}\cdot 3 \cdot 2 \cdot2=40\cdot12\cdot \sqrt{3}=480 \sqrt{3}.[/tex]


Answer: [tex]480 \sqrt{3} [/tex].

Answer:

480[tex]\sqrt{3}[/tex]

Step-by-step explanation: