Answer:[tex]5^{\frac{2}{3}}= \sqrt[3]{5^2}[/tex]
[tex]5^{\frac{1}{2}}= \sqrt{5}[/tex]
[tex]3^{\frac{2}{5}}= \sqrt[5]{3^2}[/tex]
[tex]3^{\frac{5}{2}}= \sqrt{3^5}[/tex]
Step-by-step explanation: According to the rule of exponent of radical form:
[tex]a^{\frac{m}{n} } = \sqrt[n]{a^m}[/tex].
Let us apply same rule in first number
[tex]5^{\frac{2}{3}}= \sqrt[3]{5^2}[/tex]
[tex]5^{\frac{1}{2}}= \sqrt{5}[/tex]
[tex]3^{\frac{2}{5}}= \sqrt[5]{3^2}[/tex]
[tex]3^{\frac{5}{2}}= \sqrt{3^5}[/tex]
Note: When we don't have any number on the top of radical, there 2 is understood.