Which additional fact proves that ΔRST and ΔWXY are congruent if ∠R ≅ ∠W and RS ≅ WX.

∠R = 2x + 3
∠S = x + 10
∠T = 3x - 13
A) ∠X = x + 33
B) ∠Y = x + 33
C) ∠X = 2x - 20
D) ∠Y = 2x - 20

Respuesta :

Answer:

C)[tex]\angle X=2x-20[/tex]

Step-by-step explanation:

We are given that

[tex]\angle R\cong \angle W[/tex]

[tex]RS\cong WX[/tex]

[tex]\angle R=2x+3[/tex]

[tex]\angle S=x+10[/tex]

[tex]\angle T=3x-13[/tex]

We have to find the additional fact which proves that triangle RST and triangle WXY are congruent.

In triangle RST

[tex]\angle R+\angle S+\angle T=180^{\circ}[/tex] (Triangle angles sum property)

Substitute the values then we get

[tex]2x+3+x+10+3x-13=180[/tex]

[tex]6x=180[/tex]

[tex]x=\frac{180}{6}=30^{\circ}[/tex]

[tex]\angle R=2(30)+3=63^{\circ}[/tex]

[tex]\angle S=30+10=40^{\circ}[/tex]

[tex]\angle T=3(30)-13=73^{\circ}[/tex]

[tex]\angle R=\angle W=63^{\circ}[/tex]

When two triangles are congruent then each part of one triangle is congruent to its corresponding parts of another triangle.

Therefore, if [tex]\triangle RST\cong \triangle WXY[/tex]

Then, [tex]\angle S\cong \angle X, \angle T\cong \angle Y[/tex]

Therefore, [tex]\angle Y=73^{\circ}[/tex]

[tex]\angle X=40^{\circ}[/tex]

[tex]\angle X=2(30)-20=40^{\circ}[/tex]

Hence, option C is correct.

Answer:c

Step-by-step explanation: