Respuesta :

Answer: The given expression [tex]\frac{15a^8b^4}{5a^4b}[/tex] simplified to  [tex]3a^4b^3[/tex]

Step-by-step explanation:

Given : expression [tex]\frac{15a^8b^4}{5a^4b}[/tex]

We have to simplify the given expression [tex]\frac{15a^8b^4}{5a^4b}[/tex]

Consider the given expression [tex]\frac{15a^8b^4}{5a^4b}[/tex]

Divide the numbers [tex]\frac{15}{5}=3[/tex]

[tex]=\frac{3a^8b^4}{a^4b}[/tex]

Apply exponent rule, [tex]\frac{x^a}{x^b}\:=\:x^{a-b}[/tex]

We have,

[tex]\frac{a^8}{a^4}=a^{8-4}=a^4[/tex]

[tex]=\frac{3a^4b^4}{b}[/tex]

Cancel out common factor b,

We have

[tex]=3a^4b^3[/tex]

Thus, the given expression [tex]\frac{15a^8b^4}{5a^4b}[/tex] simplified to  [tex]3a^4b^3[/tex]

Answer:

[tex]\frac{15a^8b^4}{5a^4b}=3a^{4}b^{3}[/tex]

Step-by-step explanation:

Given : Expression [tex]\frac{15a^8b^4}{5a^4b}[/tex]

To find : The simplified form of the expression?

Solution :

Step 1 - Write the expression

[tex]\frac{15a^8b^4}{5a^4b}[/tex]

Step - 2 Divide Nr. and Dr. by 5

[tex]=\frac{3a^8b^4}{a^4b}[/tex]

Step 3 - Apply exponent rule i.e, [tex]\frac{x^a}{x^b}\:=\:x^{a-b}[/tex]

[tex]=3a^{8-4}b^{4-1}}[/tex]

[tex]=3a^{4}b^{3}[/tex]

Therefore, The required simplified form of the given expression is

[tex]\frac{15a^8b^4}{5a^4b}=3a^{4}b^{3}[/tex]