Respuesta :
Answer: The given expression [tex]\frac{15a^8b^4}{5a^4b}[/tex] simplified to [tex]3a^4b^3[/tex]
Step-by-step explanation:
Given : expression [tex]\frac{15a^8b^4}{5a^4b}[/tex]
We have to simplify the given expression [tex]\frac{15a^8b^4}{5a^4b}[/tex]
Consider the given expression [tex]\frac{15a^8b^4}{5a^4b}[/tex]
Divide the numbers [tex]\frac{15}{5}=3[/tex]
[tex]=\frac{3a^8b^4}{a^4b}[/tex]
Apply exponent rule, [tex]\frac{x^a}{x^b}\:=\:x^{a-b}[/tex]
We have,
[tex]\frac{a^8}{a^4}=a^{8-4}=a^4[/tex]
[tex]=\frac{3a^4b^4}{b}[/tex]
Cancel out common factor b,
We have
[tex]=3a^4b^3[/tex]
Thus, the given expression [tex]\frac{15a^8b^4}{5a^4b}[/tex] simplified to [tex]3a^4b^3[/tex]
Answer:
[tex]\frac{15a^8b^4}{5a^4b}=3a^{4}b^{3}[/tex]
Step-by-step explanation:
Given : Expression [tex]\frac{15a^8b^4}{5a^4b}[/tex]
To find : The simplified form of the expression?
Solution :
Step 1 - Write the expression
[tex]\frac{15a^8b^4}{5a^4b}[/tex]
Step - 2 Divide Nr. and Dr. by 5
[tex]=\frac{3a^8b^4}{a^4b}[/tex]
Step 3 - Apply exponent rule i.e, [tex]\frac{x^a}{x^b}\:=\:x^{a-b}[/tex]
[tex]=3a^{8-4}b^{4-1}}[/tex]
[tex]=3a^{4}b^{3}[/tex]
Therefore, The required simplified form of the given expression is
[tex]\frac{15a^8b^4}{5a^4b}=3a^{4}b^{3}[/tex]