Respuesta :
ANSWER
The quotient is
[tex]256[/tex]
EXPLANATION
The given expression is
[tex] \frac{ {2}^{4} }{ {2}^{ - 4} } [/tex]
This is the same as
[tex] {2}^{4} \times \frac{ 1 }{ {2}^{ - 4} } [/tex]
We apply the property of exponents given below to rewrite the given expression so that it will have only positive indices.
The property is
[tex] \frac{1}{ {a}^{ - m} } = {a}^{m} [/tex]
When we apply this property we obtain,
[tex] = {2}^{4} \times {2}^{4}[/tex]
This simplifies to
[tex] = 16 \times 16[/tex]
This gives us,
[tex] = 256[/tex]
The quotient is
[tex]256[/tex]
EXPLANATION
The given expression is
[tex] \frac{ {2}^{4} }{ {2}^{ - 4} } [/tex]
This is the same as
[tex] {2}^{4} \times \frac{ 1 }{ {2}^{ - 4} } [/tex]
We apply the property of exponents given below to rewrite the given expression so that it will have only positive indices.
The property is
[tex] \frac{1}{ {a}^{ - m} } = {a}^{m} [/tex]
When we apply this property we obtain,
[tex] = {2}^{4} \times {2}^{4}[/tex]
This simplifies to
[tex] = 16 \times 16[/tex]
This gives us,
[tex] = 256[/tex]
Answer:
Quotient = 256.
Step-by-step explanation:
Given : [tex]\frac{2^{4} }{2^{-4} }[/tex]
To find : What is the quotient.
Solution : We have given that [tex]\frac{2^{4} }{2^{-4} }[/tex]
By exponent rule 1 : [tex]\frac{1}{x^{-m} }[/tex] = [tex]x^{m}[/tex]
[tex]\frac{1}{2^{-4} }[/tex] = [tex]2^{4}[/tex]
Then, = [tex]2^{4}[/tex] * [tex]2^{4}[/tex]
On simplification [tex]2^{4}[/tex] = 16
Then 16 *16 = 256
Therefore, Quotient = 256.