Respuesta :

it would be 4 times 4 which equals 16

we know that

To find the area of a rhombus, multiply the lengths of the two diagonals and divide by two

so

[tex]A=\frac{1}{2}(d1*d2)[/tex]

where

d1 and d2---------> are the lengths of the two diagonals

In this problem the diagonals are

AC and DB

The formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Step 1

Find the distance AC

[tex]A(-1,4)\ C(-1,0)[/tex]

substitute in the formula

[tex]d=\sqrt{(0-4)^{2}+(-1+1)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(0)^{2}}[/tex]

[tex]dAC=4\ units[/tex]

Step 2

Find the distance DB

[tex]D(-5,2)\ B(3,2)[/tex]

substitute in the formula

[tex]d=\sqrt{(2-2)^{2}+(3+5)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(8)^{2}}[/tex]

[tex]dDB=8\ units[/tex]

Step 3

Find the area of the rhombus

[tex]A=\frac{1}{2}(d1*d2)[/tex]

we have

[tex]d1=dAC=4\ units[/tex]

[tex]d2=dDB=8\ units[/tex]

substitute the values

[tex]A=\frac{1}{2}(4*8)=16\ units^{2}[/tex]

therefore

the answer is

[tex]16\ units^{2}[/tex]