Answer:
[tex]130^{\circ}[/tex]
Step-by-step explanation:
We know that in an triangle , angles opposite to equal sides are equal .
Given : [tex]AB=CB[/tex]
So, [tex]\angle A=\angle C[/tex] .
We get [tex]\angle C=\angle A=50^{\circ}[/tex]
Since AD bisects [tex]\angle A[/tex] , [tex]\angle XAC=\frac{1}{2}\angle A=\frac{1}{2}(50^{\circ})=25^{\circ}[/tex]
Also, as CE bisects [tex]\angle C[/tex] , [tex]\angle XCA=\frac{1}{2}\angle C=\frac{1}{2}(50^{\circ})=25^{\circ}[/tex]
We will use angle sum property which states that in [tex]\Delta XAC[/tex] ,
[tex]\angle XAC+\angle XCA+\angle AXC=180^{\circ}[/tex]
[tex]25^{\circ}+25^{\circ}+\angle AXC=180^{\circ}\\50^{\circ}+\angle AXC=180^{\circ}\\\angle AXC=180^{\circ}-50^{\circ}\\=130^{\circ}[/tex]