Respuesta :

Answer: [tex]\angle WZY=115^{\circ}[/tex]

Explanation: Since, here WXYZ is a kite where [tex]\angle XWY=47^{\circ}[/tex] and [tex]\angle ZYW=18^{\circ}[/tex]

Thus according to the property of a kite ,

Exactly one pair of opposite angles are equal and The main diagonal bisects a pair of opposite angles.

Therefore, In kite  WXYZ ,

[tex]\angle WZY=\angle WXY[/tex]   -------(1)

And, WY is the angle bisector of  kite WXYZ.

So,  [tex]\angle ZWX=2\angle XWY=2\times 47^{\circ}=94^{\circ}[/tex] ( because WY bisects [tex]\angle ZWX[/tex] into two equal angles [tex]\angle XWY[/tex] and [tex]\angle ZWY[/tex])

⇒[tex]\angle ZWX=94^{\circ}[/tex] -----(2)

Similarly, [tex]\angle XYZ=2\angle ZYW=2\times 18^{\circ}=36^{\circ}[/tex]

⇒[tex]\angle XYZ=36^{\circ}[/tex] -----(3)

Since, WXYZ is a kite ⇒[tex]\angle WXY+\angle XYZ+\angle WZY+\angle ZWX=360^{\circ}[/tex] -------(4)

Therefore,  From equation (1), (2), (3) and (4),

We get, [tex]\angle WZY=115^{\circ}[/tex]

Ver imagen parmesanchilliwack

Answer:

115

Step-by-step explanation:

took the test and got it correct