The coordinates of the midsegments for △XYZ that is parallel to XZ are (1,6) and (1,3)
The coordinates of XYZ are given as:
[tex]\mathbf{X = (0,7)}[/tex]
[tex]\mathbf{Y = (2,5)}[/tex]
[tex]\mathbf{Z = (0,1)}[/tex]
The midsegments are calculated from the midpoints of lines XY and YZ.
The formula is given as:
[tex]\mathbf{Midsegment = 0.5 \times (x_1 + x_2,y_1 + y_2)}[/tex]
So, we have:
[tex]\mathbf{XY = 0.5 \times (0 + 2,7 + 5)}[/tex]
[tex]\mathbf{XY = 0.5 \times (2,12)}[/tex]
[tex]\mathbf{XY = (1,6)}[/tex]
Also, we have:
[tex]\mathbf{YZ = 0.5 \times (0 + 2,1 + 5)}[/tex]
[tex]\mathbf{YZ = 0.5 \times (2,6)}[/tex]
[tex]\mathbf{YZ = (1,3)}[/tex]
Hence, the coordinates of the midsegments are (1,6) and (1,3)
Read more about midsegments at:
https://brainly.com/question/2273557