Respuesta :
Answer: The fraction of the neutron's kinetic energy transferred to the atomic nucleus is 1.87.
Explanation:
Use the conservation of momentum in head-on collision.
[tex]mv_{i}=mv_{f}+MV_{f}[/tex]
[tex]v_{i}-v_{f}=\frac{M}{m}V_{f}[/tex]
Put
[tex]\frac{M}{m}=14.9[/tex]
[tex]v_{i}-v_{f}=14.9V_{f}[/tex] ....... (1)
Here, m, M are the masses of the neutron and atom, [tex]v_{i}[/tex] is the initial velocity of the neutron,[tex]v_{f}[/tex] is the final velocity of the neutron and [tex]V_{f}[/tex] is the final velocity of the atom.
Use the conservation of the kinetic energy.
[tex]\frac{1}{2}mv_{i}^{2}=\frac{1}{2}mv_{f}^{2}+\frac{1}{2}MV_{f}^{2}[/tex]
[tex]v_{i}^{2}-v_{f}^{2}=\frac{M}{m}V_{f}^{2}[/tex]
Put
[tex]\frac{M}{m}=14.9[/tex].
[tex]v_{i}^{2}-v_{f}^{2}=14.9V_{f}^{2}[/tex] ...... (2)
Divide (2) by (1).
[tex]\frac{v_{i}^{2}-v_{f}^{2}}{v_{i}-v_{f}}=\frac{14.9V_{f}^{2}}{14.9V_{f}}[/tex]
[tex]\frac{v_{i}^{2}-v_{f}^{2}}{v_{i}-v_{f}}=V_{f}[/tex]
[tex]v_{i}+v_{f}=V_{f}[/tex] ...... (3)
Solve equation (1) and (3).
[tex]v_{i}=7.9V_{f}[/tex]
Calculate the fraction of the neutron's kinetic energy transferred to the atomic nucleus.
[tex]Fraction\ transferred\ to\ atom =\frac{\frac{1}{2}MV_{f}^{2}}{\frac{1}{2}mv_{i}^{2}}[/tex]
Put
[tex]\frac{M}{m}=14.9[/tex]
[tex]Fraction\ transferred\ to\ atom=\frac{14.9}{7.95}[/tex]
[tex]Fraction\ transferred\ to\ atom=1.87[/tex]
Therefore, the fraction of the neutron's kinetic energy transferred to the atomic nucleus is 1.87.
In elastic head-on collision, the energy of the system and total momentum is conserved. The fraction of the neutron's kinetic energy transferred to the atomic nucleus is 1.87.
In elastic head-on collision, the energy of the system and total momentum is conserved.
For the neutron,
- m - mass
- [tex]\bold { v_i}[/tex] - initial velocity
- [tex]\bold { v_f}[/tex] - final velocity
For the atom ,
- M- mass
- [tex]\bold { V_i}[/tex] - initial velocity
- [tex]\bold { V_f}[/tex] - final velocity
Conserved momentum on the head-on collision
[tex]\bold {mv_i = mv_f + MV_f}\\\\\bold {v_i - v_f =MmV_f}\\\\\bold { v_i - v_f = 14.9Vf}[/tex].........(I)
The kinetic energy
[tex]\bold { v_i^2 - v_f^2 = 14.9v_f^2}[/tex].............(II)
From equation (I) and (II)
[tex]\bold{\frac{ v_i - v_f}{v_i ^2- v_f^2} = \frac{12v_f^2}{12v_f} }\\\\\bold{ v_i + v_f = v_f }[/tex]...........(III)
Solve equation (I) and (III) for [tex]\bold { v_i}[/tex]
[tex]\bold{v_i = 7.9v_f }[/tex]
Now, the fraction of the neutron's kinetic energy transferred to the atomic nucleus,
[tex]\rm \bold { \frac{\frac{1}{2} MV_f^2}{\frac{1}{2} mv_i^2} = \frac{14.9}{7.95} = 1.87 }[/tex]
Hence, we can conclude that the fraction of the neutron's kinetic energy transferred to the atomic nucleus is 1.87.
To know more about kinetic energy, refer to the link:
https://brainly.com/question/12669551