Respuesta :
M=n(pie)/RT
n=osmotic pressure(1.2 atm)
M=molar of the solution
R=gas constant(0.0821)
T= temperature in kelvin 25+273
M=[1.2atm /(0.0821L atm/k mol x 298k)]=0.049mol L
M= moles of the solute/ litres of solution(250/1000)
0.049= y/0.25
moles of solute is therefore =0.01225mol
molar mass=33.29 g/0.01225mol=2.7 x10^3g/mol
n=osmotic pressure(1.2 atm)
M=molar of the solution
R=gas constant(0.0821)
T= temperature in kelvin 25+273
M=[1.2atm /(0.0821L atm/k mol x 298k)]=0.049mol L
M= moles of the solute/ litres of solution(250/1000)
0.049= y/0.25
moles of solute is therefore =0.01225mol
molar mass=33.29 g/0.01225mol=2.7 x10^3g/mol
Answer : The molar mass (g/mole) of the compound is, 2707.55 g/mole
Solution : Given,
Mass of solute = 33.2 g
Volume of solution = 250 ml = 0.250 L
Temperature of solution = [tex]25^oC=273+25=298K[/tex]
Formula used for osmotic pressure :
[tex]\pi=\frac{nRT}{V}\\\\\pi=\frac{wRT}{MV}[/tex]
where,
[tex]\pi[/tex] = osmotic pressure
V = volume of solution
R = solution constant = 0.0821 L.atm/mole.K
T= temperature of solution
M = molar mass of solute
w = mass of solute
Now put all the given values in the above formula, we get the molar mass of the compound.
[tex]1.2atm=\frac{(33.2g)\times (0.0821Latm/moleK)\times (298K)}{(M)\times (0.250L)}[/tex]
[tex]M=2707.55g/mole[/tex]
Therefore, the molar mass (g/mole) of the compound is, 2707.55 g/mole