When a ceiling fan rotating with an angular speed of 2.20 rad/s is turned off, a frictional torque of 0.225 n · m slows it to a stop in 25.5 s. what is the moment of inertia of the fan?

Respuesta :

Here, check this out.
Ver imagen abhijeet1231

Answer:

The moment of inertia of the fan is 2.60 kg-m²

Explanation:

Given that,

Angular speed = 2.20 rad/s

Torque = 0.225 N-m

Time = 25.5 sec

We need to calculate the moment of inertia of the fan

Using formula of torque

[tex]\tau=I\times \alpha[/tex]

We know that,

The angular velocity is

[tex]\Delta \omega=\alpha t[/tex]

[tex]\alpha=\dfrac{\Delta\omega}{t}[/tex]

Put the value of [tex]\alpha[/tex] in to the formula of torque

[tex]\tau=I\times\times\dfrac{\Delta\omega}{t}[/tex]

[tex]I=\dfrac{\tau\times t}{\Delta\omega}[/tex]

Put the value into the formula

[tex]I=\dfrac{0.225\times25.5}{2.20}[/tex]

[tex]I=2.60\ kg-m^2[/tex]

Hence, The moment of inertia of the fan is 2.60 kg-m²