Respuesta :
Answer:
(a)
h=3x
(b)
[tex]A=\frac{\sqrt{3} }{4} x^2[/tex]
(c)
[tex]A=\frac{3\sqrt{3} }{2} x^2[/tex]
(d)
[tex]V=\frac{3\sqrt{3} }{2} x^3[/tex] units^3
Step-by-step explanation:
We are given a regular hexagon pyramid
Since, it is regular hexagon
so, value of edge of all sides must be same
The length of the base edge of a pyramid with a regular hexagon base is represented as x
so, edge of base =x
b=x
Let's assume each blank spaces as a , b , c, d
we will find value for each spaces
(a)
The height of the pyramid is 3 times longer than the base edge
so, height =3*edge of base
height=3x
h=3x
(b)
Since, it is in units^2
so, it is given to find area
we know that
area of equilateral triangle is
[tex]=\frac{\sqrt{3} }{4} b^2[/tex]
h=3x
b=x
now, we can plug values
[tex]A=\frac{\sqrt{3} }{4} x^2[/tex]
(c)
we know that
there are six such triangles in the base of hexagon
So,
Area of base of hexagon = 6* (area of triangle)
Area of base of hexagon is
[tex]=6\times \frac{\sqrt{3} }{4} x^2[/tex]
[tex]=\frac{3\sqrt{3} }{2} x^2[/tex]
(d)
Volume=(1/3)* (Area of hexagon)*(height of pyramid)
now, we can plug values
Volume is
[tex]=\frac{1}{3}\times\frac{3\sqrt{3} }{2} x^2\times (3x)[/tex]
[tex]V=\frac{3\sqrt{3} }{2} x^3[/tex] units^3
The true statements are:
- The height of the pyramid can be represented as 3x.
- The area of an equilateral triangle with length x is [tex]\frac{\sqrt 3}{4}x^2[/tex] units^2.
- The area of the hexagon base is six times the area of the equilateral triangle.
- The volume of the pyramid is [tex] \frac{3\sqrt 3}{2}x^3[/tex] units^3.
The length of base edge is given as:
[tex]Length=x[/tex]
The height is three times the length.
So, the expression that represents the height is:
[tex]Height =3x[/tex]
The area of an equilateral triangle is then calculated as:
[tex]A_t = \frac{\sqrt 3}{4}l^2[/tex]
Where l represents the side length of the triangle.
So, we have:
[tex]A_t = \frac{\sqrt 3}{4}x^2[/tex]
The area of the hexagonal base is 6 times the area of the triangle.
This is so because, an hexagon has 6 sides
So, we have:
[tex]A_h = \frac{\sqrt 3}{4}x^2 \times 6[/tex]
[tex]A_h = \frac{3\sqrt 3}{2}x^2 [/tex]
Lastly, the volume of the pyramid is then calculated as:
[tex]V = \frac 13 \times A_h \times h[/tex]
This gives
[tex]V = \frac 13 \times \frac{3\sqrt 3}{2}x^2 \times 3x[/tex]
So, we have:
[tex]V = \frac{3\sqrt 3}{2}x^2 \times x[/tex]
[tex]V = \frac{3\sqrt 3}{2}x^3[/tex]
Read more about volumes at:
https://brainly.com/question/16597042