Respuesta :
(360) = 10/25 = .4
z(380) = 30/25 = 1.2
P(350 < x < 380) = normalcdf(.4, 1.2)
z(380) = 30/25 = 1.2
P(350 < x < 380) = normalcdf(.4, 1.2)
Answer: 22.95 %
Step-by-step explanation:
Given : Scores on a standardized test are normally distributed with
Mean : [tex]\mu=350[/tex]
Standard deviation : [tex]\sigma =25[/tex]
The formula to find z-score:-
[tex]z=\dfrac{x-\mu}{\sigma}[/tex]
For x=360
[tex]z=\dfrac{360-350}{25}=0.4[/tex]
For x=380
[tex]z=\dfrac{380-350}{25}=1.2[/tex]
The p-value = [tex]P(360<X<380)[/tex]
[tex]=P(0.4<z<1.2)=P(1.2)-P(0.4)\\\\= 0.8849303-0.6554217=0.2295086\approx0.2295[/tex]
In percent , the percent of students scored between 360 and 380 =
[tex]0.2295\times100=22.95\%[/tex]