The volume of a cube with side length x is given by [tex]x^3[/tex].
So, if the volume of a cube is [tex]V[/tex], we find its side length by taking the cube root of V.
Thus, the side lengths of the cubes are:
[tex] \sqrt[3]{24}= \sqrt[3]{8\cdot3}= \sqrt[3]{8}\cdot\sqrt[3]{3}=2\sqrt[3]{3} [/tex]
[tex] \sqrt[3]{81}= \sqrt[3]{27\cdot3}= \sqrt[3]{27}\cdot\sqrt[3]{3}=3\sqrt[3]{3} [/tex]
[tex] \sqrt[3]{375}= \sqrt[3]{125\cdot3}= \sqrt[3]{125}\cdot\sqrt[3]{3}=5\sqrt[3]{3} [/tex]
Thus, the stack has a height of [tex]2\sqrt[3]{3}+3\sqrt[3]{3}+5\sqrt[3]{3}=10\sqrt[3]{3}[/tex].
Answer: [tex]10\sqrt[3]{3}[/tex]