Respuesta :

Answer:[tex]\frac{3y+2}{6y^2}[/tex]


Step-by-step explanation: Given rational expression : [tex]\frac{\frac{3y+2}{3y} }{\frac{6y^2+4y}{3y+2} }[/tex].

Rewriting it in proper form.

[tex]\frac{3y+2}{3y}[/tex] ÷[tex]\frac{6y^2+4y}{3y+2}[/tex]

Converting division sign into multiplication and flipping second fraction, we get

[tex]\frac{3y+2}{3y}[/tex]×[tex]\frac{3y+2}{6y^2+4y}[/tex]

Factoring out 2y from[tex]6y^2+4y[/tex]

[tex]6y^2+4y = 2y(3y+2)[/tex]

[tex]\frac{3y+2}{3y}[/tex]×[tex]\frac{3y+2}{2y(3y+2)}[/tex]

Crossing out common factors (3y+2) in second fraction, we get

=[tex]\frac{3y+2}{3y}[/tex]×[tex]\frac{1}{2y}[/tex]

=[tex]\frac{3y+2}{6y^2}[/tex].


Answer:

B

Step-by-step explanation: