Respuesta :
Using the rules of cosines, the measure of the turn between the second and third legs of the race is given by
[tex]\cos^{-1}\left( \frac{180^2+160^2-140^2}{2\times180\times160} \right)=\cos^{-1}\left( \frac{32,400+26,600-19,600}{57,600} \right) \\ \\ =\cos^{-1}\left( \frac{39,400}{57,600} \right)=\cos^{-1}(0.6840)\approx47^o[/tex]
[tex]\cos^{-1}\left( \frac{180^2+160^2-140^2}{2\times180\times160} \right)=\cos^{-1}\left( \frac{32,400+26,600-19,600}{57,600} \right) \\ \\ =\cos^{-1}\left( \frac{39,400}{57,600} \right)=\cos^{-1}(0.6840)\approx47^o[/tex]
Answer:
48 degrees
Step-by-step explanation:
You can calculate the angle between the second and third legs of the race by substituting the three side lengths of the triangle in the Law of Cosines.