Respuesta :
The area of a circle is found by the formula:
[tex]\displaystyle{ A=\pi R^2[/tex], where r is the radius of the circle, and the circumference is found by the formula [tex]C=2 \pi R[/tex].
So, we set the equation [tex]\displaystyle{ 58=\pi R^2[/tex]. Rearranging, we have:
[tex]\displaystyle{ R^2= \frac{58}{\pi} \approx 58/3.14=18.47[/tex], so [tex]\displaystyle{ R= \sqrt{18.47} \approx 4.3[/tex] (ft).
By the circumference formula, [tex]C=2 \pi R \approx 2\cdot3.14\cdot4.3=27[/tex] (ft0.
Answer: A.26.99 ft (There is only a small difference due to calculations with approximate values)
[tex]\displaystyle{ A=\pi R^2[/tex], where r is the radius of the circle, and the circumference is found by the formula [tex]C=2 \pi R[/tex].
So, we set the equation [tex]\displaystyle{ 58=\pi R^2[/tex]. Rearranging, we have:
[tex]\displaystyle{ R^2= \frac{58}{\pi} \approx 58/3.14=18.47[/tex], so [tex]\displaystyle{ R= \sqrt{18.47} \approx 4.3[/tex] (ft).
By the circumference formula, [tex]C=2 \pi R \approx 2\cdot3.14\cdot4.3=27[/tex] (ft0.
Answer: A.26.99 ft (There is only a small difference due to calculations with approximate values)