Respuesta :
[tex]\bf \begin{array}{llll}
minutes&seconds\\
------&------\\
1m&60s\\\\
(1m)^2&(60s)^2\\
m^2&3600s^2\\\\
(1m)^3&(60s)^3\\
m^3&216000s^3
\end{array}\\\\
-------------------------------\\\\
\cfrac{2160^o}{\underline{m^2}}\cdot \cfrac{\underline{m^2}}{3600~s^2}\implies \cfrac{2160^o}{3600~s^2}\implies \cfrac{3^o}{5~s^2}\implies 0.6\frac{deg}{s^2}[/tex]
Solution: The acceleration of ride in degrees per second square is 0.6 degree/[tex]s^2[/tex].
Explanation:
It is given that the inclination of the amusement park ride is accelerating at a rate of 2160 degree/[tex]s^2[/tex].
Since we know that 1 minute = 60 seconds.
[tex]1 min^2=3600sec^2[/tex]
[tex]3600^{\circ}/min^2=1^{\circ}/sec^2[/tex]
[tex]1^{\circ}/min^2=\frac{1}{3600}^{\circ}/sec^2[/tex]
[tex]2160^{\circ}/min^2=\frac{2160}{3600}^{\circ}/sec^2\\[/tex]
[tex]2160^{\circ}/min^2=0.6^{\circ}/sec^2[/tex]
Therefore, the The acceleration of ride in degrees per second square is 0.6 degree/[tex]s^2[/tex].