Respuesta :
first divide the coefficients:-
-18 / -12 = 3/2
a^-2 / a^-4 = a^2
b^-5 / b^-6 = b
so the expression simplifies to 3a^2b / 2
-18 / -12 = 3/2
a^-2 / a^-4 = a^2
b^-5 / b^-6 = b
so the expression simplifies to 3a^2b / 2
Answer:
[tex]\frac{-18a^{-2}b^5}{-12a^{-4}b^{-6}}=\frac{3a^{2}b^{11}}{2}[/tex]
Step-by-step explanation:
Given : Expression [tex]\frac{-18a^{-2}b^5}{-12a^{-4}b^{-6}}[/tex]
To find : Which expression is equivalent to given expression?
Solution :
Given expression is
[tex]\frac{-18a^{-2}b^5}{-12a^{-4}b^{-6}}[/tex]
Applying the exponent rule of division, [tex]\frac{x^a}{x^b} =x^{a-b}[/tex]
[tex]=\frac{-18a^{-2+4}b^{5+6}}{-12}[/tex]
[tex]=\frac{3a^{2}b^{11}}{2}[/tex]
Therefore, The required expression is [tex]\frac{-18a^{-2}b^5}{-12a^{-4}b^{-6}}=\frac{3a^{2}b^{11}}{2}[/tex]