Respuesta :

first divide the  coefficients:-
-18 / -12  = 3/2

a^-2 / a^-4  = a^2

b^-5 / b^-6  =  b


so the expression simplifies to  3a^2b / 2

Answer:

[tex]\frac{-18a^{-2}b^5}{-12a^{-4}b^{-6}}=\frac{3a^{2}b^{11}}{2}[/tex]

Step-by-step explanation:

Given : Expression  [tex]\frac{-18a^{-2}b^5}{-12a^{-4}b^{-6}}[/tex]

To find : Which expression is equivalent to given expression?

Solution :

Given expression is

[tex]\frac{-18a^{-2}b^5}{-12a^{-4}b^{-6}}[/tex]

Applying the exponent rule of division, [tex]\frac{x^a}{x^b} =x^{a-b}[/tex]

[tex]=\frac{-18a^{-2+4}b^{5+6}}{-12}[/tex]

[tex]=\frac{3a^{2}b^{11}}{2}[/tex]

Therefore, The required expression is [tex]\frac{-18a^{-2}b^5}{-12a^{-4}b^{-6}}=\frac{3a^{2}b^{11}}{2}[/tex]