Respuesta :
[tex]\bf ~~~~~~ \textit{Continuously Compounding Interest Earned Amount}\\\\
A=Pe^{rt}\qquad
\begin{cases}
A=\textit{accumulated amount}\\
P=\textit{original amount deposited}\to& \$20000\\
r=rate\to 3\frac{3}{5}\%\to \frac{3\frac{3}{5}}{100}\to \frac{18}{500}\to &0.036 \\
t=years\to &5
\end{cases}
\\\\\\
A=20000e^{0.036\cdot 5}\implies A=20000e^{0.18}\implies A\approx 23944.3487262[/tex]
Answer:
23,944.35
Step-by-step explanation:
Initial amount (principal) is 20,000
rate of interest is 3 3/5= [tex]3 \frac{3}{5} =\frac{18}{5}=3.6[/tex]
Divide by 100 to remove %, so its 0.036
compounding continuously formula is
[tex]A=Pe^{rt}[/tex]
Where P is the initial amount
'r' is the rate of interest=0.036
t is the number of years=5
Plug in all the values in the formula
[tex]A=Pe^{rt}[/tex]
[tex]A=20000e^{0.036 \cdot 5}[/tex]
A= 23944.34726
A= 23,944.35