Respuesta :

[tex]\bf ~~~~~~ \textit{Continuously Compounding Interest Earned Amount}\\\\ A=Pe^{rt}\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\to& \$20000\\ r=rate\to 3\frac{3}{5}\%\to \frac{3\frac{3}{5}}{100}\to \frac{18}{500}\to &0.036 \\ t=years\to &5 \end{cases} \\\\\\ A=20000e^{0.036\cdot 5}\implies A=20000e^{0.18}\implies A\approx 23944.3487262[/tex]

Answer:

23,944.35

Step-by-step explanation:

Initial amount (principal) is 20,000

rate of interest is 3  3/5= [tex]3 \frac{3}{5} =\frac{18}{5}=3.6[/tex]

Divide by 100 to remove %, so its 0.036

compounding continuously formula is

[tex]A=Pe^{rt}[/tex]

Where P is the initial amount

'r' is the rate of interest=0.036

t is the number of years=5

Plug in all the values in the formula

[tex]A=Pe^{rt}[/tex]

[tex]A=20000e^{0.036 \cdot 5}[/tex]

A= 23944.34726

A= 23,944.35