Respuesta :
Answer:
[tex]5(x^2+4x)=7[/tex]
Option 2 and 3 is correct.
Step-by-step explanation:
Case (I).
Given equation is
[tex]5x^2+20x-7=0[/tex]
Firstly, we will add of 7 in both sides
[tex]5x^2+20x-7+7=7[/tex]
Now, same variable of opposite sign is cancelled
[tex]5x^2+20x=7[/tex]
Now, taking 5 common from left side
[tex]5(x^2+4x)=7[/tex]
Case (II).
Given equation
[tex]5x^2+20x-7=0[/tex]
Firstly, we will add of 7 in both sides
[tex]5x^2+20x=7[/tex]
Now, we will add of 20 in both sides
[tex]5x^2+20x+20=7+20[/tex]
Now, taking common of 5 from left side
[tex]5(x^2+4x+4)=7+20[/tex]
So, The next step on solving completing square is [tex]5(x^2+4x)=7[/tex] and [tex]5(x^2+4x+4)=7+20[/tex]
Answer:
2,3,4 are the answers on edge
Step-by-step explanation: