Respuesta :
The task can be expressed in a following equation:
120%*a=80%*b
1.20a=0.80b
1.2a=0.8b
12a=8b
3a=2b
1) in terms of a:
3a=2b
b=3a/2=1.5a
a+b=a+1.5a=2.5a
2) in terms of b:
3a=2b
a=2/3b
a+b=2/3b+b=[tex]1\frac{2}{3}b[/tex]
120%*a=80%*b
1.20a=0.80b
1.2a=0.8b
12a=8b
3a=2b
1) in terms of a:
3a=2b
b=3a/2=1.5a
a+b=a+1.5a=2.5a
2) in terms of b:
3a=2b
a=2/3b
a+b=2/3b+b=[tex]1\frac{2}{3}b[/tex]
Answer
As per the statement:
If 120% of a is equal to 80% of b.
"120% of a" means [tex]\frac{120}{100} \times a[/tex]
"80% of b" means [tex]\frac{80}{100} \times b[/tex]
then;
[tex]\frac{120}{100} \times a =\frac{80}{100} \times b [/tex]
Multiply both sides by 100 we get;
[tex]120 \times a =\80\times b [/tex]
Divide both sides by 80 we have;
[tex]\frac{120}{80}a = b[/tex]
Simplify:
[tex]\frac{3}{2}a = b[/tex] .....[1]
or
[tex]a = \frac{2}{3} b[/tex] ......[2]
We have to find the value of a+b in terms of a and b:
Substitute the values of [1] we have;
[tex]a+b = a+\frac{3}{2}a[/tex]
Combine like terms;
[tex]a+b = \frac{5}{2}a[/tex]
Now, find the value of a+b in terms of b;
Substitute equation [2] we have;
[tex]a+b = \frac{2}{3}b+b[/tex]
Combine like terms;
[tex]a+b =\frac{5}{3}b[/tex]
Therefore, the value of a+b in terms of a and b are;
[tex]a+b = \frac{5}{2}a[/tex]
[tex]a+b =\frac{5}{3}b[/tex]