Respuesta :

(5a^2-4)*(25a^4+20a^2+16) is your answer

Answer:

[tex](5a^2-4)(25a^4 + 20a^2+16)[/tex]

Step-by-step explanation:

[tex]125a^6-64[/tex]

WE can write 125 as 5^3

Also a^6 = (a^2)^3

64  can be written as 4^3

[tex]125a^6-64[/tex]

[tex]5^3(a^2)^3-4^3[/tex]

[tex](5a^2)^3-4^3[/tex]

Now we apply a^3 - b^3 formula

[tex]a^3 - b^3 = (a-b)(a^2 + ab+b^2)[/tex]

a= 5a^2  and b = 4

Plug in the values in the formula

[tex](5a^2)^3 - (4)^3 = (5a^2-4)((5a^2)^2 + (5a^2)(4)+4^2)[/tex]

[tex] = (5a^2-4)(25a^4 + 20a^2+16)[/tex]

WE factored it completely