Respuesta :

divide 3x^3 -8x^2+3x  + 2 by (x - 1)

THis gives the quotient   3x^2 - 5x - 2

3x^2 - 5x -  2  = (3x + 1)(x  - 2 )


so x = 2 is another root  


Its  the first choice 

Answer: x = 2

Step-by-step explanation:

Given polynomial function,

[tex]f(x) = 3x^3-8x^2 + 3x + 2[/tex],

According to question, If x = 1 is a zero of the polynomial function [tex]f(x) = 3x^3-8x^2 + 3x + 2[/tex]

Therefore, (x - 1) is the factor of [tex]f(x) = 3x^3 - 8x^2 + 3x + 2[/tex]

By dividing [tex]3x^3- 8x^2 + 3x + 2[/tex] by (x - 1)  (mentioned in below diagram)

We get, [tex]3x^2-5x-2[/tex].

Therefore, [tex]3x^3 - 8x^2 + 3x + 2=(x - 1)(3x^2-5x-2)[/tex]

⇒[tex]3x^3 - 8x^2 + 3x + 2=(x - 1)(3x^2-6x+x-2)[/tex]  (by grouping method)

⇒[tex]3x^3- 8x^2 + 3x + 2=(x - 1)(3x+1)(x-2)[/tex]

Thus, x-2 is a factor of  [tex]3x^3- 8x^2 + 3x + 2[/tex],

Therefore, x=2 is a zero of [tex]3x^3- 8x^2 + 3x + 2[/tex]



Ver imagen parmesanchilliwack